Faculty

Department of Biology
Kathryn L. Edwards
Professor

M. Siobhan Fennessy
Associate Professor

Christopher M. Gillen
Assistant Professor

E. Raymond Heithaus
Jordan Professor of Environmental Science

Patricia A. Heithaus
Instructor

Karen A. Hicks
Assistant Professor

Haruhiko Itagaki
Associate Professor (on leave)

Wade H. Powell
Assistant Professor

Joan L. Slonczewski
Codirector, Professor

Department of Chemistry
Scott D. Cummings
Associate Professor

Sheryl A. Hemkin
Assistant Professor

Mo Hunsen
Assistant Professor

James S. Keller
Associate Professor

John K. Lutton
Professor

Rosemary A. Marusak
Codirector, Associate Professor

Dudley G. Thomas
Director of Chemistry Labs

The intersection of chemistry and biology provides a creative focus for understanding the molecular processes of life. In the scientific literature, interdisciplinary research efforts are now commonplace, while in the classroom, biological topics are frequently addressed by chemists and the chemistry of biological processes is often treated by biologists.

Kenyon’s chemistry and biology departments offer an interdisciplinary program including two majors, biochemistry and molecular biology, each of which combines aspects of their curricula. The biochemistry and molecular biology majors are intended for students whose interests lie at the exciting interface of chemistry and biology.

The biochemistry major provides a chemistry-based curriculum with a significant biology component, producing a solid background for continuing graduate work in biochemistry and chemistry. The molecular biology major combines a substantial chemistry background with detailed studies in cellular and molecular biology that will prepare students for postgraduate studies in these fields.

Biochemistry and molecular biology majors are encouraged to include undergraduate research as part of their curriculum, especially if they intend to continue in these fields after Kenyon. There are several options for collaborative research with faculty members from the departments of biology and chemistry. These include courses on research strategy (BIOL 385, 386; CHEM 375, 376) as well as honors and independent study.

Students should refer to the departmental descriptions for details.

An oversight committee for biochemistry and molecular biology, composed of faculty members from the chemistry and biology departments, administers the program and determines requirements for the Senior Exercise and for the Honors Program. Students interested in these majors should contact either of the program codirectors, Rosemary Marusak or Joan Slonczewski.

Requirements for the Majors

The biochemistry major and the molecular biology major have many requirements in common. In addition, each of the majors has its own set of required courses.

Courses Required for BOTH Majors (5 3/4 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 113</td>
<td>From Cell to Organism</td>
<td>1/2</td>
</tr>
<tr>
<td>BIOL 114</td>
<td>Genetics and Development of Organisms</td>
<td>1/2</td>
</tr>
<tr>
<td>CHEM 111,112</td>
<td>Introductory Chemistry</td>
<td>1 unit</td>
</tr>
<tr>
<td>CHEM 115,116</td>
<td>Introductory Chemistry Lab</td>
<td>1/2</td>
</tr>
<tr>
<td>CHEM 231,232</td>
<td>Organic Chemistry</td>
<td>1 unit</td>
</tr>
<tr>
<td>CHEM 233,234</td>
<td>Organic Chemistry Lab</td>
<td>1/2</td>
</tr>
<tr>
<td>CHEM 256</td>
<td>Biochemistry</td>
<td>1/2</td>
</tr>
<tr>
<td>BIOL 363</td>
<td>Molecular Biology and Genomics</td>
<td>1/2</td>
</tr>
<tr>
<td>BIOL 364</td>
<td>Gene Manipulation (lab)</td>
<td>1/4</td>
</tr>
<tr>
<td>CHEM 335</td>
<td>Chemical Kinetics and Thermodynamics</td>
<td>1/2</td>
</tr>
</tbody>
</table>
Additional Courses Required for the Major in Biochemistry (1 3/4 units)

In addition to the requirements listed above (under courses required for both majors), students majoring in biochemistry must complete the following courses:

- CHEM 341 Instrumental Analysis (1/2 unit)
- CHEM 371 Advanced Laboratory, Biochemistry (1/4 unit)
- Two advanced lab courses from: CHEM 372, 373, 374, 375, 376 (two courses of 1/4 unit each, for a total of 1/2 unit)
- The Senior Exercise, under the supervision of the Department of Chemistry

Additional Courses Required for the Major in Molecular Biology (1 3/4 units)

In addition to the requirements listed above (under courses required for both majors), students majoring in molecular biology must complete the following courses:

- BIOL 109-110 or 109-111
 Introduction to Experimental Biology (1/2 unit)
- Two additional lecture/discussion courses in biology at level 200 or 300 (1 unit)
- One advanced laboratory from: BIOL 234, 239, 256, 322, 342, 346, 359, 367, or CHEM 371 (1/4 unit)
- The Senior Exercise, under the supervision of the Department of Biology

Honors

Honors thesis projects may be conducted under the direct supervision of a faculty member in either department (biology or chemistry) for either major (molecular biology or biochemistry). In either of the majors, the Honors thesis substitutes for the written portion of the Senior Exercise. Additional Senior Exercise requirements follow those of the department in which Honors is conducted.

Planning for GRE

Majors planning to take the GRE in molecular biology should consider selecting BIOL 366 as an elective.